Modular Forms and Special Cycles on Shimura Curves. (AM-161) / Najlacnejšie knihy
Modular Forms and Special Cycles on Shimura Curves. (AM-161)

Kod: 04641107

Modular Forms and Special Cycles on Shimura Curves. (AM-161)

Autor Michael Rapoport, Stephen S. Kudla, Tonghai Yang

Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over ... więcej

128.61


Dostępna u dostawcy
Wysyłamy za 9 - 12 dni
Dodaj do schowka

Zobacz książki o podobnej tematyce

Podaruj tę książkę jeszcze dziś
  1. Zamów książkę i wybierz "Wyślij jako prezent".
  2. Natychmiast wyślemy Ci bon podarunkowy, który możesz przekazać adresatowi prezentu.
  3. Książka zostanie wysłana do adresata, a Ty o nic nie musisz się martwić.

Dowiedz się więcej

Więcej informacji o Modular Forms and Special Cycles on Shimura Curves. (AM-161)

Za ten zakup dostaniesz 323 punkty

Opis

Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soul arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.

Szczegóły książki

Kategoria Książki po angielsku Mathematics & science Mathematics Calculus & mathematical analysis

128.61

Ulubione w innej kategorii



Osobní odběr Bratislava a 2642 dalších

Copyright ©2008-24 najlacnejsie-knihy.sk Wszelkie prawa zastrzeżonePrywatnieCookies


Konto: Logowanie
Všetky knihy sveta na jednom mieste. Navyše za skvelé ceny.

Nákupní košík ( prázdný )

Nakupte za 59,99 € a
máte doručení zdarma.

Twoja lokalizacja: