Quantifying Non-Equilibrium in Hypersonic Flows Using Entropy Generation / Najlacnejšie knihy
Quantifying Non-Equilibrium in Hypersonic Flows Using Entropy Generation

Code: 08244146

Quantifying Non-Equilibrium in Hypersonic Flows Using Entropy Generation

by Ryan W Carr

The constitutive relations traditionally used for finding shear stress and heat flux in a fluid become invalid in non-equilibrium flow. Their derivation from kinetic theory only demonstrates they are valid only for small deviation ... more

59.99


In stock at our supplier
Shipping in 15 - 20 days
Add to wishlist

You might also like

Give this book as a present today
  1. Order book and choose Gift Order.
  2. We will send you book gift voucher at once. You can give it out to anyone.
  3. Book will be send to donee, nothing more to care about.

Book gift voucher sampleRead more

More about Quantifying Non-Equilibrium in Hypersonic Flows Using Entropy Generation

You get 150 loyalty points

Book synopsis

The constitutive relations traditionally used for finding shear stress and heat flux in a fluid become invalid in non-equilibrium flow. Their derivation from kinetic theory only demonstrates they are valid only for small deviations from equilibrium. Because it is fundamentally linked to non-equilibrium, entropy generation is used to investigate the limits of the continuum constitutive relations. However, the continuum equations are inherently limited to near equilibrium conditions due to the constitutive relations; thus kinetic theory may be used as a basis for comparison. Direct Simulation Monte Carlo (DSMC), a particle method alternative to continuum methods, is based on kinetic theory and is used to develop a flow solution for benchmark comparison. Solutions were obtained for hypersonic flow over two axi-symmetric geometries using both a continuum solver and DSMC. Formulations for entropy generation are presented for each method, and the two solutions are compared. The continuum solutions fail to capture regions of non-equilibrium as evidenced by thicker shocks in the DSMC solution. To extend the useful range of the continuum constitutive relations, the Lennard-Jones model is offered as an alternative to Sutherland's Law for calculating viscosity and thermal conductivity. The two are compared, and parameters offering a good fit for these flows are suggested for the Lennard-Jones model.

Book details

Book category Books in English Society & social sciences Education

59.99

Trending among others



Collection points Bratislava a 2642 dalších

Copyright ©2008-24 najlacnejsie-knihy.sk All rights reservedPrivacyCookies


Account: Log in
Všetky knihy sveta na jednom mieste. Navyše za skvelé ceny.

Shopping cart ( Empty )

For free shipping
shop for 59,99 € and more

You are here: