Physiology of Astroglia / Najlacnejšie knihy
Physiology of Astroglia

Code: 10836572

Physiology of Astroglia

by Alexei Verkhratsky, Vladimir Parpura

Astrocytes can be defined as the glia inhabiting the nervous system with the main function in the maintenance of nervous tissue homeostasis. Classified into several types according to their morphological appearance, many of astroc ... more

84.42


In stock at our supplier
Shipping in 15 - 20 days
Add to wishlist

You might also like

Give this book as a present today
  1. Order book and choose Gift Order.
  2. We will send you book gift voucher at once. You can give it out to anyone.
  3. Book will be send to donee, nothing more to care about.

Book gift voucher sampleRead more

More about Physiology of Astroglia

You get 212 loyalty points

Book synopsis

Astrocytes can be defined as the glia inhabiting the nervous system with the main function in the maintenance of nervous tissue homeostasis. Classified into several types according to their morphological appearance, many of astrocytes form a reticular structure known as astroglial syncytium, owing to their coupling via intercellular channels organized into gap junctions. Not only do astrocytes establish such homocellular contacts, but they also engage in intimate heterocellular interactions with neurons, most notably at synaptic sites. As synaptic structures house the very core of information transfer and processing in the nervous system, astroglial perisynaptic positioning assures that these glial cells can nourish neurons and establish bidirectional communication with them, functions outlined in the concepts of the astrocytic cradle and multi-partite synapse, respectively. Astrocytes possess a rich assortment of ligand receptors, ion and water channels, and ion and ligand transporters, which collectively contribute to astrocytic control of homeostasis and excitability. Astroglia control glutamate and adenosine homeostasis to exert modulatory actions affecting the real-time operation of synapses. Fluctuations of intracellular calcium can lead to the release of various chemical transmitters from astrocytes through a process termed gliotransmission. Sodium fluctuations are closely associated to those of calcium with both dynamic events interfacing signaling and metabolism. Astrocytes appear fully integrated into the brain cellular circuitry, being an indispensable part of neural networks.

Book details

Book category Books in English Medicine Clinical & internal medicine Neurology & clinical neurophysiology

84.42

Trending among others



Collection points Bratislava a 2642 dalších

Copyright ©2008-24 najlacnejsie-knihy.sk All rights reservedPrivacyCookies


Account: Log in
Všetky knihy sveta na jednom mieste. Navyše za skvelé ceny.

Shopping cart ( Empty )

For free shipping
shop for 59,99 € and more

You are here: