Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon / Najlacnejšie knihy
Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon

Code: 08287417

Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon

by James D Patterson

The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the re ... more

59.95


In stock at our supplier
Shipping in 15 - 20 days
Add to wishlist

You might also like

Give this book as a present today
  1. Order book and choose Gift Order.
  2. We will send you book gift voucher at once. You can give it out to anyone.
  3. Book will be send to donee, nothing more to care about.

Book gift voucher sampleRead more

More about Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon

You get 150 loyalty points

Book synopsis

The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating. The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A wavelength shift of 120nm with 53V applied bias was demonstrated by one device geometry using 6.27 micrometer air gap. The finesse of the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1 micrometer results in an increased wavelength tuning range of 175 nm with a CMOS compatible 4.75V.

Book details

Book category Books in English Society & social sciences Education

59.95

Trending among others



Collection points Bratislava a 2642 dalších

Copyright ©2008-24 najlacnejsie-knihy.sk All rights reservedPrivacyCookies


Account: Log in
Všetky knihy sveta na jednom mieste. Navyše za skvelé ceny.

Shopping cart ( Empty )

For free shipping
shop for 59,99 € and more

You are here: