Developing High-Finesse Cavities for Phase Contrast Electron Microscopy / Najlacnejšie knihy
Developing High-Finesse Cavities for Phase Contrast Electron Microscopy

Code: 09543828

Developing High-Finesse Cavities for Phase Contrast Electron Microscopy

by Brian Lai, Andrew Lee, Kevin Li

Research Paper from the year 2014 in the subject Physics - Optics, University of California, Berkeley , language: English, abstract: The transmission electron microscope is an indispensable tool in science, with applications acros ... more

35.72

RRP: 38.46 €

You save 2.74 €


In stock at our supplier
Shipping in 15 - 20 days
Add to wishlist

You might also like

Give this book as a present today
  1. Order book and choose Gift Order.
  2. We will send you book gift voucher at once. You can give it out to anyone.
  3. Book will be send to donee, nothing more to care about.

Book gift voucher sampleRead more

More about Developing High-Finesse Cavities for Phase Contrast Electron Microscopy

You get 90 loyalty points

Book synopsis

Research Paper from the year 2014 in the subject Physics - Optics, University of California, Berkeley , language: English, abstract: The transmission electron microscope is an indispensable tool in science, with applications across medicine, materials science, and geology, among others. However, it is limited in its ability to operate with Zernike phase contrast, a technology commonplace in light microscopy.§§Zernike phase contrast can be obtained, but only by using carbon-film phase plates or similar methods, all of which are short-lived. Electrons moving close to the speed of light cause damage as they bombard the phase plates. The phase plates need to be replaced frequently, which introduces inconsistencies due to variations between the plates as they are replaced.§§The purpose of this paper is to demonstrate the plausibility of utilizing ponderomotive forces within an optical cavity to achieve phase contrast, creating a laser-based phase plate, thereby replacing the carbon films and eliminating swapping. We approach this problem by using a Fabry-Perot to concentrate the laser power to be able to achieve the necessary electron phase shift with conventional CO2 lasers. We demonstrate a cavity with finesse of ~24000 and numerical aperture of ~.016, and calculate the laser power needed to be supplied to be ~19W, well within the state of art. These results demonstrate the practicality of laser-based electron microscope phase plates.

Book details

Book category Books in English Mathematics & science Science: general issues

35.72

Trending among others



Collection points Bratislava a 2642 dalších

Copyright ©2008-24 najlacnejsie-knihy.sk All rights reservedPrivacyCookies


Account: Log in
Všetky knihy sveta na jednom mieste. Navyše za skvelé ceny.

Shopping cart ( Empty )

For free shipping
shop for 59,99 € and more

You are here: